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Problem Statement: Large Evolving Highly-Configurable Software Projects

FPrime

numpy

Where are configuration options realized?

What happens if we change them?
(effort, side effects, cost, ...)
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Background
How does feature tracing work?
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Example: Configurable (?) Graph Implementations

single system

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

multiple variants

1 /// V1: {G, E, W}

2 // FEAT: Graph

3 interface Graph {

4 List<Node> nodes();

5 // FEAT: E

6 List<Edge> edges();

7 List<Node> nodes(double w);

8 }

1 /// V3: {G, E, D}

2 interface Graph {

3 List<Node> nodes();

4 List<Edge> edges();

5 List<Edge> incomEdges(Node n);

6 // FEAT: C

7 Graph subGraph(Color c);

8 }

1 /// V2: {G, E, C}

2 interface Graph {

3 List<Node> nodes();

4 // FEAT: C

5 List<Node> nodes(Color c);

6 List<Edge> edges();

7 Graph subGraph(Color c);

8 }
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Proactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

commit messages

development on branches
semi-automated feature trace recording
semi-automated nudging (based on
reinforcement learning)

requires

discipline
development practices and guidelines
remains a manual task

⇒ often neglected
⇒ missed opportunity
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Retroactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

manual code inspection

dynamic techniques (which compare
executions)

static techniques (e.g., slicing, clone
detection, comparison of variants)

combinations thereof

requires

heuristics

execution effort and data

while automated, reliability?

→ manual task
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Feature Tracing – Summary

proactive
reliable∗

pin-pointed

without immediate benefit
additional documentation burden

(∗exclude uncertainty, feature interactions...)

retroactive

manual vs. automated
automated: static or dynamic or hybrid
based on heuristics
⇒ less reliable

⇒ many techniques, but not optimal
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Proactive + Retroactive Feature Tracing

How can retroactive feature tracing benefit from proactive traces?

Results from experimenting with comparison-based feature location
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Comparison-Based Feature Location

1 /// V1: {G, E, W}

2 // FEAT: Graph

3 interface Graph {

4 List<Node> nodes();

5 // FEAT: E

6 List<Edge> edges();

7 List<Node> nodes(double w);

8 }

1 /// V3: {G, E, D}

2 interface Graph {

3 List<Node> nodes();

4 List<Edge> edges();

5 List<Edge> incomEdges(Node n);

6 // FEAT: C

7 Graph subGraph(Color c);

8 }

1 /// V2: {G, E, C}

2 interface Graph {

3 List<Node> nodes();

4 // FEAT: C

5 List<Node> nodes(Color c);

6 List<Edge> edges();

7 Graph subGraph(Color c);

8 }

n
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Comparison-Based Feature Location

annotation per node (based on features in
configurations)

Feature Trace

Graph ∧ Edge interface Graph, nodes(),
edges(), subGraph()

Weighted nodes (double w)

Colored nodes(Color c)
Directed incomingEdges(Edge e)

Controlled Experiment

propagate ‘reliable annotation’
whenever possible (not contradicting
among one set)
measure quantitatively

effect of adding proactive mappings
per variant
effect of number of compared
variants

⇒ increase in accuracy?
⇒ invest in exploiting proactive knowledge?
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Setup

Subject Systems: Marlin, ArgoUML, VIM; OpenVPN, BusyBox

Groundtruth: VEVOS, Benchmark generator for highly configurable software

Measure:

Agreement between ground truth and computed mapping to keep a line of code in variant

Compute: precision, recall, F1-Score
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Results : Busybox (precision & recall (row), 3 and 7 variants (columns))
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Results : Busybox (precision & recall (row), 3 and 7 variants (columns))
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Results : VIM (precision & recall (row), 3 and 7 variants (columns))
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Results: Summary

only 5% of proactive trace raise the overall accuracy by 10-20%

difference between precision and recall → many false positives
(→ include more than necessary in source code)

the more variants, the higher the accuracy (with and without added traces)

⇒ potential to exploit proactive traces further

⇒ examine the effect in further techniques, also qualitatively

⇒ optimize retroactive techniques but also inform semi-automated tracing (e.g. for
machine learning)
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niques

no optimal solution (we examined proactive
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potentials in machine learning, necessity for
maintenance over time and different artifacts
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Thanks!

Feedback, Questions, ...?

greiner@imada.sdu.dk
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