
Is the Feature Traceability Problem Already Solved?

Sandra Greiner Timo Kehrer

Software Engineering Group, University of Bern, CH
ACP Section, University of Southern Denmark, DK

WSRE, April 2024, Bad Honnef



First thought ...

Yes,

but ...

2 / 21



First thought ...

Yes,
but ...

2 / 21



manual vs automation
accuracy and reliability
maintenance over time

3 / 21



manual vs automation
accuracy and reliability
maintenance over time

3 / 21



manual vs automation
accuracy and reliability
maintenance over time

3 / 21



manual vs automation
accuracy and reliability
maintenance over time

3 / 21



Feature Traceability

What is it and why should we care?
How can we do better?

4 / 21



Feature Traceability

What is it and why should we care?
How can we do better?

4 / 21



Today: Large Evolving Software Projects

hardly possible to comprehend,
analyze, and modernize

particularly, if highly configurable

5 / 21



Today: Large Evolving Software Projects

hardly possible to comprehend,
analyze, and modernize

particularly, if highly configurable

5 / 21



Today: Large Evolving Software Projects

hardly possible to comprehend,
analyze, and modernize

particularly, if highly configurable

5 / 21



Today: Large Evolving Software Projects

hardly possible to comprehend,
analyze, and modernize

particularly, if highly configurable

5 / 21



Problem Statement: Large Evolving Highly-Configurable Software Projects

FPrime

numpy

Where are configuration options realized?

What happens if we change them?
(effort, side effects, cost, ...)

6 / 21



Problem Statement: Large Evolving Highly-Configurable Software Projects

FPrime numpy

Where are configuration options realized?

What happens if we change them?
(effort, side effects, cost, ...)

6 / 21



Problem Statement: Large Evolving Highly-Configurable Software Projects

FPrime numpy

Where are configuration options realized?

What happens if we change them?
(effort, side effects, cost, ...)

6 / 21



Problem Statement: Large Evolving Highly-Configurable Software Projects

FPrime numpy

Where are configuration options realized?

What happens if we change them?
(effort, side effects, cost, ...)

feature tracing

6 / 21



Background
How does feature tracing work?

7 / 21



Example: Configurable (?) Graph Implementations

single system

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

multiple variants

1 /// V1: {G, E, W}

2 // FEAT: Graph

3 interface Graph {

4 List<Node> nodes();

5 // FEAT: E

6 List<Edge> edges();

7 List<Node> nodes(double w);

8 }

1 /// V3: {G, E, D}

2 interface Graph {

3 List<Node> nodes();

4 List<Edge> edges();

5 List<Edge> incomEdges(Node n);

6 // FEAT: C

7 Graph subGraph(Color c);

8 }

1 /// V2: {G, E, C}

2 interface Graph {

3 List<Node> nodes();

4 // FEAT: C

5 List<Node> nodes(Color c);

6 List<Edge> edges();

7 Graph subGraph(Color c);

8 }

8 / 21



Example: Configurable (?) Graph Implementations

single system

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

multiple variants

1 /// V1: {G, E, W}

2 // FEAT: Graph

3 interface Graph {

4 List<Node> nodes();

5 // FEAT: E

6 List<Edge> edges();

7 List<Node> nodes(double w);

8 }

1 /// V3: {G, E, D}

2 interface Graph {

3 List<Node> nodes();

4 List<Edge> edges();

5 List<Edge> incomEdges(Node n);

6 // FEAT: C

7 Graph subGraph(Color c);

8 }

1 /// V2: {G, E, C}

2 interface Graph {

3 List<Node> nodes();

4 // FEAT: C

5 List<Node> nodes(Color c);

6 List<Edge> edges();

7 Graph subGraph(Color c);

8 }

8 / 21



Example: Configurable (?) Graph Implementations

single system

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

multiple variants

1 /// V1: {G, E, W}

2 // FEAT: Graph

3 interface Graph {

4 List<Node> nodes();

5 // FEAT: E

6 List<Edge> edges();

7 List<Node> nodes(double w);

8 }

1 /// V3: {G, E, D}

2 interface Graph {

3 List<Node> nodes();

4 List<Edge> edges();

5 List<Edge> incomEdges(Node n);

6 // FEAT: C

7 Graph subGraph(Color c);

8 }

1 /// V2: {G, E, C}

2 interface Graph {

3 List<Node> nodes();

4 // FEAT: C

5 List<Node> nodes(Color c);

6 List<Edge> edges();

7 Graph subGraph(Color c);

8 }

8 / 21



Example: Configurable (?) Graph Implementations

single system

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

multiple variants

1 /// V1: {G, E, W}

2 // FEAT: Graph

3 interface Graph {

4 List<Node> nodes();

5 // FEAT: E

6 List<Edge> edges();

7 List<Node> nodes(double w);

8 }

1 /// V3: {G, E, D}

2 interface Graph {

3 List<Node> nodes();

4 List<Edge> edges();

5 List<Edge> incomEdges(Node n);

6 // FEAT: C

7 Graph subGraph(Color c);

8 }

1 /// V2: {G, E, C}

2 interface Graph {

3 List<Node> nodes();

4 // FEAT: C

5 List<Node> nodes(Color c);

6 List<Edge> edges();

7 Graph subGraph(Color c);

8 }

8 / 21



Example: Configurable (?) Graph Implementations

single system

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

multiple variants

1 /// V1: {G, E, W}

2 // FEAT: Graph

3 interface Graph {

4 List<Node> nodes();

5 // FEAT: E

6 List<Edge> edges();

7 List<Node> nodes(double w);

8 }

1 /// V3: {G, E, D}

2 interface Graph {

3 List<Node> nodes();

4 List<Edge> edges();

5 List<Edge> incomEdges(Node n);

6 // FEAT: C

7 Graph subGraph(Color c);

8 }

1 /// V2: {G, E, C}

2 interface Graph {

3 List<Node> nodes();

4 // FEAT: C

5 List<Node> nodes(Color c);

6 List<Edge> edges();

7 Graph subGraph(Color c);

8 }

8 / 21



Proactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

commit messages

development on branches
semi-automated feature trace recording
semi-automated nudging (based on
reinforcement learning)

requires

discipline
development practices and guidelines
remains a manual task

⇒ often neglected
⇒ missed opportunity

9 / 21



Proactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

commit messages
development on branches

semi-automated feature trace recording
semi-automated nudging (based on
reinforcement learning)

requires

discipline
development practices and guidelines
remains a manual task

⇒ often neglected
⇒ missed opportunity

9 / 21



Proactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

commit messages
development on branches
semi-automated feature trace recording

semi-automated nudging (based on
reinforcement learning)

requires

discipline
development practices and guidelines
remains a manual task

⇒ often neglected
⇒ missed opportunity

9 / 21



Proactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

commit messages
development on branches
semi-automated feature trace recording
semi-automated nudging (based on
reinforcement learning)

requires

discipline
development practices and guidelines
remains a manual task

⇒ often neglected
⇒ missed opportunity

9 / 21



Proactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

commit messages
development on branches
semi-automated feature trace recording
semi-automated nudging (based on
reinforcement learning)

requires

discipline
development practices and guidelines
remains a manual task

⇒ often neglected
⇒ missed opportunity

9 / 21



Proactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

commit messages
development on branches
semi-automated feature trace recording
semi-automated nudging (based on
reinforcement learning)

requires

discipline
development practices and guidelines
remains a manual task

⇒ often neglected
⇒ missed opportunity

9 / 21



Retroactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

manual code inspection

dynamic techniques (which compare
executions)

static techniques (e.g., slicing, clone
detection, comparison of variants)

combinations thereof

requires

heuristics

execution effort and data

while automated, reliability?

→ manual task

10 / 21



Retroactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

manual code inspection

dynamic techniques (which compare
executions)

static techniques (e.g., slicing, clone
detection, comparison of variants)

combinations thereof

requires

heuristics

execution effort and data

while automated, reliability?

→ manual task

10 / 21



Retroactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

manual code inspection

dynamic techniques (which compare
executions)

static techniques (e.g., slicing, clone
detection, comparison of variants)

combinations thereof

requires

heuristics

execution effort and data

while automated, reliability?

→ manual task

10 / 21



Retroactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

manual code inspection

dynamic techniques (which compare
executions)

static techniques (e.g., slicing, clone
detection, comparison of variants)

combinations thereof

requires

heuristics

execution effort and data

while automated, reliability?

→ manual task

10 / 21



Retroactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

manual code inspection

dynamic techniques (which compare
executions)

static techniques (e.g., slicing, clone
detection, comparison of variants)

combinations thereof

requires

heuristics

execution effort and data

while automated, reliability?

→ manual task

10 / 21



Retroactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

manual code inspection

dynamic techniques (which compare
executions)

static techniques (e.g., slicing, clone
detection, comparison of variants)

combinations thereof

requires

heuristics

execution effort and data

while automated, reliability?

→ manual task

10 / 21



Retroactive Tracing

public class Graph {

List<Node> getNodes(Color c) { ... }

List<Edge> getIncomEdges(Node n) { ... }

// #IFDEF Weighted

List<Edge> getEdges(double w)

{ ... }

// #ENDIF

Graph subGraph(double w) { ... }

}

public class Node{}

// #IFDEF Color

public class Color {}

// #ENDIF

through

manual code inspection

dynamic techniques (which compare
executions)

static techniques (e.g., slicing, clone
detection, comparison of variants)

combinations thereof

requires

heuristics

execution effort and data

while automated, reliability?

→ manual task

10 / 21



Feature Tracing – Summary

proactive
reliable∗

pin-pointed

without immediate benefit
additional documentation burden

(∗exclude uncertainty, feature interactions...)

retroactive

manual vs. automated
automated: static or dynamic or hybrid
based on heuristics
⇒ less reliable

⇒ many techniques, but not optimal

11 / 21



Feature Tracing – Summary

proactive
reliable∗

pin-pointed
without immediate benefit
additional documentation burden

(∗exclude uncertainty, feature interactions...)

retroactive

manual vs. automated
automated: static or dynamic or hybrid
based on heuristics
⇒ less reliable

⇒ many techniques, but not optimal

11 / 21



Feature Tracing – Summary

proactive
reliable∗

pin-pointed
without immediate benefit
additional documentation burden

(∗exclude uncertainty, feature interactions...)

retroactive

manual vs. automated

automated: static or dynamic or hybrid
based on heuristics
⇒ less reliable

⇒ many techniques, but not optimal

11 / 21



Feature Tracing – Summary

proactive
reliable∗

pin-pointed
without immediate benefit
additional documentation burden

(∗exclude uncertainty, feature interactions...)

retroactive

manual vs. automated
automated: static or dynamic or hybrid

based on heuristics
⇒ less reliable

⇒ many techniques, but not optimal

11 / 21



Feature Tracing – Summary

proactive
reliable∗

pin-pointed
without immediate benefit
additional documentation burden

(∗exclude uncertainty, feature interactions...)

retroactive

manual vs. automated
automated: static or dynamic or hybrid
based on heuristics

⇒ less reliable

⇒ many techniques, but not optimal

11 / 21



Feature Tracing – Summary

proactive
reliable∗

pin-pointed
without immediate benefit
additional documentation burden

(∗exclude uncertainty, feature interactions...)

retroactive

manual vs. automated
automated: static or dynamic or hybrid
based on heuristics
⇒ less reliable

⇒ many techniques, but not optimal

11 / 21



Feature Traceability

What is it and why should we care?

How can we do better?

12 / 21



Feature Traceability
What is it and why should we care?

How can we do better?

12 / 21



Proactive + Retroactive Feature Tracing

How can retroactive feature tracing benefit from proactive traces?

Results from experimenting with comparison-based feature location

13 / 21



Proactive + Retroactive Feature Tracing

How can retroactive feature tracing benefit from proactive traces?

Results from experimenting with comparison-based feature location

13 / 21



Comparison-Based Feature Location

1 /// V1: {G, E, W}

2 // FEAT: Graph

3 interface Graph {

4 List<Node> nodes();

5 // FEAT: E

6 List<Edge> edges();

7 List<Node> nodes(double w);

8 }

1 /// V3: {G, E, D}

2 interface Graph {

3 List<Node> nodes();

4 List<Edge> edges();

5 List<Edge> incomEdges(Node n);

6 // FEAT: C

7 Graph subGraph(Color c);

8 }

1 /// V2: {G, E, C}

2 interface Graph {

3 List<Node> nodes();

4 // FEAT: C

5 List<Node> nodes(Color c);

6 List<Edge> edges();

7 Graph subGraph(Color c);

8 }

n

Graph

n(w)e s

Graph

n n(c) eie(n)n e s

n s

n

n

e

ee

Graph

CA1 (V1 & V2 & V3)

CA2 (V2 & V3)

V1 V2
V3

parse

E

Graph

Graph

Graph

E

C

match

Graph

n(c)

Graph

ie(n)

s n(w)

C

C

C

bla blub

14 / 21



Comparison-Based Feature Location

1 /// V1: {G, E, W}

2 // FEAT: Graph

3 interface Graph {

4 List<Node> nodes();

5 // FEAT: E

6 List<Edge> edges();

7 List<Node> nodes(double w);

8 }

1 /// V3: {G, E, D}

2 interface Graph {

3 List<Node> nodes();

4 List<Edge> edges();

5 List<Edge> incomEdges(Node n);

6 // FEAT: C

7 Graph subGraph(Color c);

8 }

1 /// V2: {G, E, C}

2 interface Graph {

3 List<Node> nodes();

4 // FEAT: C

5 List<Node> nodes(Color c);

6 List<Edge> edges();

7 Graph subGraph(Color c);

8 }

n

Graph

n(w)e s

Graph

n n(c) eie(n)n e s

n s

n

n

e

ee

Graph

CA1 (V1 & V2 & V3)

CA2 (V2 & V3)

V1 V2
V3

parse

E

Graph

Graph

Graph

E

C

match

Graph

n(c)

Graph

ie(n)

s n(w)

C

C

C

bla blub

14 / 21



Comparison-Based Feature Location

1 /// V1: {G, E, W}

2 // FEAT: Graph

3 interface Graph {

4 List<Node> nodes();

5 // FEAT: E

6 List<Edge> edges();

7 List<Node> nodes(double w);

8 }

1 /// V3: {G, E, D}

2 interface Graph {

3 List<Node> nodes();

4 List<Edge> edges();

5 List<Edge> incomEdges(Node n);

6 // FEAT: C

7 Graph subGraph(Color c);

8 }

1 /// V2: {G, E, C}

2 interface Graph {

3 List<Node> nodes();

4 // FEAT: C

5 List<Node> nodes(Color c);

6 List<Edge> edges();

7 Graph subGraph(Color c);

8 }

n

Graph

n(w)e s

Graph

n n(c) eie(n)n e s

n s

n

n

e

ee

Graph

CA1 (V1 & V2 & V3)

CA2 (V2 & V3)

V1 V2
V3

parse

E

Graph

Graph

Graph

E

C

match

Graph

n(c)

Graph

ie(n)

s n(w)

C

C

C

14 / 21



Comparison-Based Feature Location

annotation per node (based on features in
configurations)

Feature Trace

Graph ∧ Edge interface Graph, nodes(),
edges(), subGraph()

Weighted nodes (double w)

Colored nodes(Color c)
Directed incomingEdges(Edge e)

Controlled Experiment

propagate ‘reliable annotation’
whenever possible (not contradicting
among one set)
measure quantitatively

effect of adding proactive mappings
per variant
effect of number of compared
variants

⇒ increase in accuracy?
⇒ invest in exploiting proactive knowledge?

15 / 21



Comparison-Based Feature Location

annotation per node (based on features in
configurations)

Feature Trace

Graph ∧ Edge interface Graph, nodes(),
edges(), subGraph()

Weighted nodes (double w)

Colored nodes(Color c)
Directed incomingEdges(Edge e)

Controlled Experiment

propagate ‘reliable annotation’
whenever possible (not contradicting
among one set)
measure quantitatively

effect of adding proactive mappings
per variant
effect of number of compared
variants

⇒ increase in accuracy?
⇒ invest in exploiting proactive knowledge?

15 / 21



Comparison-Based Feature Location

annotation per node (based on features in
configurations)

Feature Trace

Graph ∧ Edge interface Graph, nodes(),
edges(), subGraph()

Weighted nodes (double w)

Colored nodes(Color c)
Directed incomingEdges(Edge e)

Controlled Experiment

propagate ‘reliable annotation’
whenever possible (not contradicting
among one set)
measure quantitatively

effect of adding proactive mappings
per variant
effect of number of compared
variants

⇒ increase in accuracy?
⇒ invest in exploiting proactive knowledge?

15 / 21



Comparison-Based Feature Location

annotation per node (based on features in
configurations)

Feature Trace

Graph ∧ Edge interface Graph, nodes(),
edges(), subGraph()

Weighted nodes (double w)

Colored nodes(Color c)
Directed incomingEdges(Edge e)

Controlled Experiment

propagate ‘reliable annotation’
whenever possible (not contradicting
among one set)
measure quantitatively

effect of adding proactive mappings
per variant
effect of number of compared
variants

⇒ increase in accuracy?
⇒ invest in exploiting proactive knowledge?

15 / 21



Comparison-Based Feature Location

annotation per node (based on features in
configurations)

Feature Trace

Graph ∧ Edge interface Graph, nodes(),
edges(), subGraph()

Weighted nodes (double w)

Colored nodes(Color c)
Directed incomingEdges(Edge e)

Controlled Experiment

propagate ‘reliable annotation’
whenever possible (not contradicting
among one set)
measure quantitatively

effect of adding proactive mappings
per variant
effect of number of compared
variants

⇒ increase in accuracy?
⇒ invest in exploiting proactive knowledge?

15 / 21



Comparison-Based Feature Location

annotation per node (based on features in
configurations)

Feature Trace

Graph ∧ Edge interface Graph, nodes(),
edges(), subGraph()

Weighted nodes (double w)

Colored nodes(Color c)
Directed incomingEdges(Edge e)

Controlled Experiment

propagate ‘reliable annotation’
whenever possible (not contradicting
among one set)
measure quantitatively

effect of adding proactive mappings
per variant
effect of number of compared
variants

⇒ increase in accuracy?
⇒ invest in exploiting proactive knowledge?

15 / 21



Comparison-Based Feature Location

annotation per node (based on features in
configurations)

Feature Trace

Graph ∧ Edge interface Graph, nodes(),
edges(), subGraph()

Weighted nodes (double w)

Colored nodes(Color c)
Directed incomingEdges(Edge e)

Controlled Experiment

propagate ‘reliable annotation’
whenever possible (not contradicting
among one set)
measure quantitatively

effect of adding proactive mappings
per variant
effect of number of compared
variants

⇒ increase in accuracy?
⇒ invest in exploiting proactive knowledge?

15 / 21



Setup

Subject Systems: Marlin, ArgoUML, VIM; OpenVPN, BusyBox

Groundtruth: VEVOS, Benchmark generator for highly configurable software

Measure:

Agreement between ground truth and computed mapping to keep a line of code in variant

Compute: precision, recall, F1-Score

16 / 21



Setup

Subject Systems: Marlin, ArgoUML, VIM; OpenVPN, BusyBox

Groundtruth: VEVOS, Benchmark generator for highly configurable software

Measure:

Agreement between ground truth and computed mapping to keep a line of code in variant

Compute: precision, recall, F1-Score

16 / 21



Setup

Subject Systems: Marlin, ArgoUML, VIM; OpenVPN, BusyBox

Groundtruth: VEVOS, Benchmark generator for highly configurable software

Measure:

Agreement between ground truth and computed mapping to keep a line of code in variant

Compute: precision, recall, F1-Score

16 / 21



Results : Busybox (precision & recall (row), 3 and 7 variants (columns))

0% 5% 10% 15% 20% 25%
Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0% 5% 10% 15% 20% 25%
Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0% 5% 10% 15% 20% 25%
Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

0% 5% 10% 15% 20% 25%
Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

17 / 21



Results : Busybox (precision & recall (row), 3 and 7 variants (columns))

0% 5% 10% 15% 20% 25%
Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

0% 5% 10% 15% 20% 25%
Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0% 5% 10% 15% 20% 25%
Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
0% 5% 10% 15% 20% 25%

Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
17 / 21



Results : VIM (precision & recall (row), 3 and 7 variants (columns))

0% 5% 10% 15% 20% 25%
Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0% 5% 10% 15% 20% 25%
Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

0% 5% 10% 15% 20% 25%
Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0% 5% 10% 15% 20% 25%
Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

18 / 21



Results : VIM (precision & recall (row), 3 and 7 variants (columns))

0% 5% 10% 15% 20% 25%
Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

0% 5% 10% 15% 20% 25%
Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
0% 5% 10% 15% 20% 25%

Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0% 5% 10% 15% 20% 25%
Proactive Tracing Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
18 / 21



Results: Summary

only 5% of proactive trace raise the overall accuracy by 10-20%

difference between precision and recall → many false positives
(→ include more than necessary in source code)

the more variants, the higher the accuracy (with and without added traces)

⇒ potential to exploit proactive traces further

⇒ examine the effect in further techniques, also qualitatively

⇒ optimize retroactive techniques but also inform semi-automated tracing (e.g. for
machine learning)

19 / 21



Results: Summary

only 5% of proactive trace raise the overall accuracy by 10-20%

difference between precision and recall → many false positives
(→ include more than necessary in source code)

the more variants, the higher the accuracy (with and without added traces)

⇒ potential to exploit proactive traces further

⇒ examine the effect in further techniques, also qualitatively

⇒ optimize retroactive techniques but also inform semi-automated tracing (e.g. for
machine learning)

19 / 21



Results: Summary

only 5% of proactive trace raise the overall accuracy by 10-20%

difference between precision and recall → many false positives
(→ include more than necessary in source code)

the more variants, the higher the accuracy (with and without added traces)

⇒ potential to exploit proactive traces further

⇒ examine the effect in further techniques, also qualitatively

⇒ optimize retroactive techniques but also inform semi-automated tracing (e.g. for
machine learning)

19 / 21



Results: Summary

only 5% of proactive trace raise the overall accuracy by 10-20%

difference between precision and recall → many false positives
(→ include more than necessary in source code)

the more variants, the higher the accuracy (with and without added traces)

⇒ potential to exploit proactive traces further

⇒ examine the effect in further techniques, also qualitatively

⇒ optimize retroactive techniques but also inform semi-automated tracing (e.g. for
machine learning)

19 / 21



Summary

20 / 21



Summary

20 / 21



Summary

feature traceability comes with plenty of tech-
niques

20 / 21



Summary

feature traceability comes with plenty of tech-
niques

no optimal solution (we examined proactive
potentials)

20 / 21



Summary

feature traceability comes with plenty of tech-
niques

no optimal solution (we examined proactive
potentials)

potentials in machine learning, necessity for
maintenance over time and different artifacts

20 / 21



Thanks!

Feedback, Questions, ...?

greiner@imada.sdu.dk

21 / 21


