Generative AI and Variability A Research Vision

Sandra Greiner Klaus Schmid² Thorsten Berger³ Sebastian Krieter⁴ Kristof Meixner⁵

Software Engineering Group University of Bern, Switzerland

Februray, 9th 2024

VaMoS '24 in Bern

u^b

²University of Hildesheim ³Ruhr University Bochum ⁴University of Ulm ⁵TU Vienna

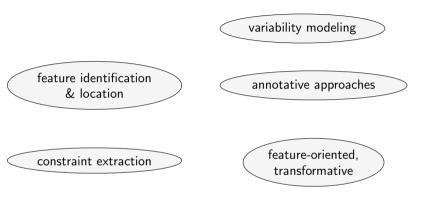
Managing Variable-Intensive Software

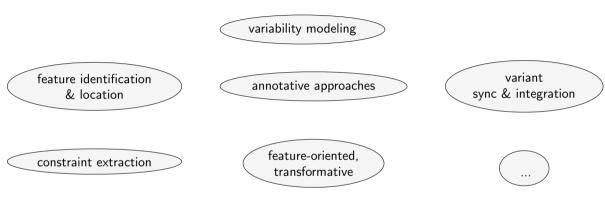
u^b

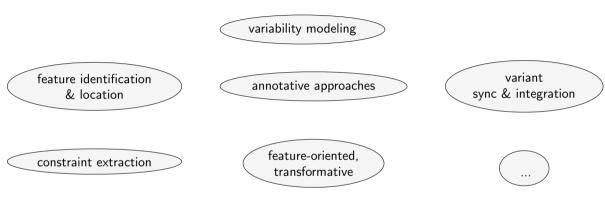
SOTA: Large (Evolving) Variability-Intensive Software

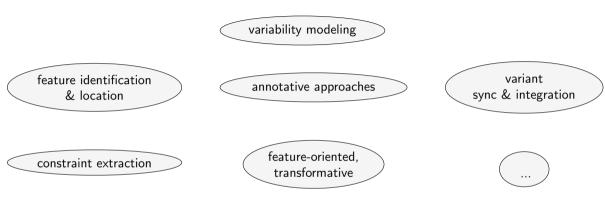
Sign up	0		
nasa / fprime (Public)			¥ Fork 1.2k
Code 🕑 Issues 114	11 Pull requests 4 😡 Discussions		rojects 8 🖽
P master +		5o to file Code +	About
LeStarch Update CONTR	1BUTING.md (#1670) 🗸 on Se	p 26, 2022 🕥 4,770	F' - A flight se embedded s
.github	lestarch: removing permissions-intensive re	p 6 months ago	
Autocoders	Update check-spelling to v0.0.20 (#1583)	7 months ago	raspberry-pi
CFDP	mstarch: all cmake is now targets, deployme	in 2 years ago	cpp nasa
Drv	Add sys/time.h include to IpSocket for musl	c 9 months ago	flight spar
Fpp	Revise Ref topology model	2 years ago	object-oriented-pr flight-software
Pw	Update check-spelling to v0.0.20 (#1583)	7 months ago	
Os	Only support set_cpu_affinity with glibc (#1	(17) 9 months ago	C Readme
RPI	Latest ActiveRateGroup updates (#1510)	9 months ago	. 4월 Apache-2.0 ☆ 9.3k stars
Ref	Update/ref int tests (#1479)	9 months ago	
STest	Revise Deframer design and implementatio	n (last year	¥ 1.2k fork
Svc	Update check-spelling to v0.0.20 (#1583)	7 months ago	
Utils	Use identity comparison with singleton (#15	01) 9 months ago	Releases 1
d	lestarch: initial implementation of RPI integ	at 2 years ago	Release v3.1.1: on Aug 19, 2022 + 14 releases
cmake	Update check-spelling to v0.0.20 (#1583)	7 months ago	
config	Latest ActiveRateGroup updates (#1510)	9 months ago	
docs	Update check-spelling to v0.0.20 (#1583)	7 months ago	Contributor
.clang-tidy	Replace NULL with nullptr (#1049)	2 years ago	Contributors 1
.dockerignore	Fix #1215 Remove incorrect references to n	on 2 years ago	
	Fix #1215 Remove incorrect references to n	on 2 years ago	🔅 😱 🕲 🔇

 u^{b}









language-specific, hard to analyze large systems, and to maintain consistently ...

language-specific, hard to analyze large systems, and to maintain consistently ...

still insufficient genericity and automation

Availability and Generalization Power of Generative AI

Business / Tech

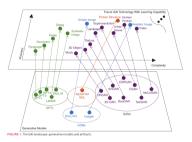
A year after ChatGPT's release, the AI revolution is just beginning

By Catherine Thorbecke, CNN (2) 8 minute read - Updated 10:32 AM EST, Thu November 30, 2023

6 X 8 @

 u^{\flat}

Availability and Generalization Power of Generative AI



Business / Tech

A year after ChatGPT's release, the AI revolution is just beginning

By <u>Catherine Thorbecke</u>, CNN © 8 minute read - Updated 10:32 AM EST, Thu November 30, 2023

6 X = @

Availability and Generalization Power of Generative AI

is just beginning Dy Catherine Transmiss, server O B minute read - Updated 10:32 AM EST, Thu November 30, 2023 A X = Φ JI. Cámara et al. UMI Class diagram PlantUM Promot I would like to write a C Videoclub class diagram in name: String PlantUML in which a Videoclub rents movies The Videoclub has ronts customers, and both

A year after ChatGPT's release, the AI revolution

Fig. 2 Prompt used to ask ChatGPT to generate a UML class diagram of a video club system, and the resulting model

(C) Movie

Business / Tech

786

the Videorlub, the

customers must have

movies and the

Customer

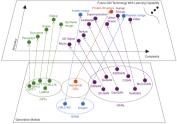
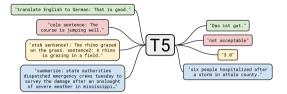
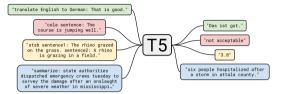
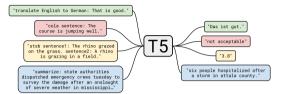


FIGURE 1. The GAI landscape: generative models and artifacts.

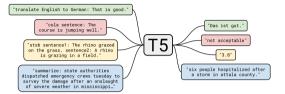
On Programming Variability with Large Language Model-based Assistant

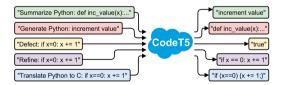

Figure 1: End-user customization of Cat TikZ code


What does it need from research to support maintaining variability-intensive software systems with Generative AI?


Background

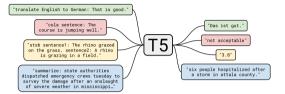
 u^{\flat}

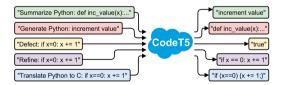



The basic idea is to use a large language corpus to train a neural network to learn the language, by hiding part of the text and asking the network to guess the missing parts. $u^{\scriptscriptstyle b}$

The basic idea is to use a large language corpus to train a neural network to learn the language, by hiding part of the text and asking the network to guess the missing parts.

large pre-trained transformer models: convert *input* text into *output* text (encoder-decoder) u^{\flat}


The basic idea is to use a large language corpus to train a neural network to learn the language, by hiding part of the text and asking the network to guess the missing parts.

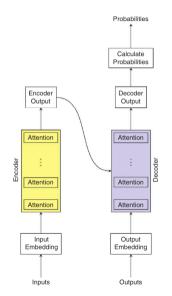

large pre-trained transformer models: convert *input* text into *output* text (encoder-decoder)

Generative AI for SE: pre-trained on several programming languages defect & clone detection code summarization code translation,

...

 \boldsymbol{u}^{b}

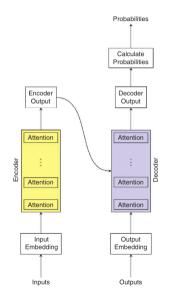
The basic idea is to use a large language corpus to train a neural network to learn the language, by hiding part of the text and asking the network to guess the missing parts.


large pre-trained transformer models: convert *input* text into *output* text (encoder-decoder)

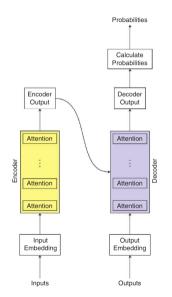
Generative AI for SE: pre-trained on several programming languages defect & clone detection code summarization code translation,

...

 \boldsymbol{u}^{b}


Transformer Architecture

context window defines size of input and output (in tokens)


Transformer Architecture

context window defines size of input and output (in tokens) typical sizes: 8k-32k

Transformer Architecture

context window defines size of input and output (in tokens) typical sizes: 8k-32k

Further tuning through hyperparameters (temperature, learning rate, ...)

 u^{\flat}

What does it need from research to support maintaining variability-intensive software systems with Generative AI?

Idea

How can we assess success of Gen-Al-enabled development of variability-intensive software?

How can we assess success of Gen-Al-enabled development of variability-intensive software?

SYNOPSYS[®] LEVELS OF DRIVING AUTOMATION 0 2 3 5 4 NO PARTIAL DRIVER CONDITIONAL HIGH FULL AUTOMATION ASSISTANCE AUTOMATION AUTOMATION AUTOMATION AUTOMATION single automated driving tasks under attentino or interactino required.

u^b

How can we **classify** and assess progress in using Generative AI for variability-aware SE ?

How can we **classify** and assess progress in using Generative AI for variability-aware SE ?

Scale information amount processed in one step

How can we **classify** and assess progress in using Generative AI for variability-aware SE ?

Scale information amount processed in one step

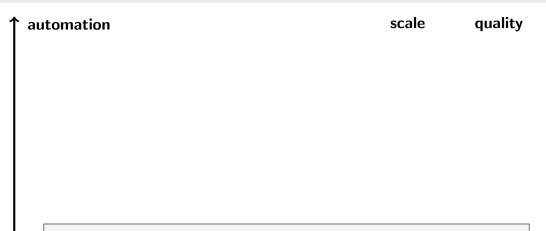
Task Type analytical vs. adaptive, to a productive end*

How can we **classify** and assess progress in using Generative AI for variability-aware SE ?

Scale information amount processed in one step

Task Type analytical vs. adaptive, to a productive end*

Quality level of reliability: random, junior developer, senior developer, even better



How can we **classify** and assess progress in using Generative AI for variability-aware SE ?

- Scale information amount processed in one step
- Task Type analytical vs. adaptive, to a productive end*
- Quality level of reliability: random, junior developer, senior developer, even better
- Automation level of manual intervention

*not a specific variability-intensive task

LO No Generative AI

automation

scale quality

L1 No Generative AI for Variability

small (files)

low

LO No Generative AI

automation	scale	quality
		l
L2 Basic Generative AI for Variability	small (project)	low
L1 No Generative AI for Variability	small (files)	low
L0 No Generative Al		

`automation	scale	quality
L3 Advanced Generative AI for Variability	multiple (projects)	high
L2 Basic Generative AI for Variability	small (project)	low
L1 No Generative AI for Variability	small (files)	low
LO No Generative AI		

$u^{\scriptscriptstyle b}$	
0 UNIVERSITÄT BEEN	

` au	tomation	scale	quality
	L4 Full Generative AI for Variability	unlimited	expert
	L3 Advanced Generative AI for Variability	multiple (projects)	high
	L2 Basic Generative AI for Variability	small (project)	low
	L1 No Generative AI for Variability	small (files)	low
	LO No Generative Al		

Increase Scale

generic solutions SE solutions SPLE solutions (partitioning of large software projects)

generic solutions SE solutions SPLE solutions (partitioning of large software projects)

Increase Task

towards reaching productive usage

 u^{\flat}

UNIVERSITÄT

generic solutions SE solutions SPLE solutions (partitioning of large software projects)

Increase Task

towards reaching productive usage when and how integrate existing tools ensure traceability self-optimizations, multiple agents u^{\flat}

UNIVERSITÄT

Increase Quality (and reliability)

generic solutions SE solutions SPLE solutions (partitioning of large software projects)

Increase Task

towards reaching productive usage when and how integrate existing tools ensure traceability self-optimizations, multiple agents u^{\flat}

UNIVERSITÄT

generic solutions SE solutions SPLE solutions (partitioning of large software projects)

Increase Task

towards reaching productive usage when and how integrate existing tools ensure traceability self-optimizations, multiple agents

Increase Quality (and reliability)

decrease error probability \rightarrow pre-training, and fine-tuning

Increase Scale

generic solutions SE solutions SPLE solutions (partitioning of large software projects)

Increase Task

towards reaching productive usage when and how integrate existing tools ensure traceability self-optimizations, multiple agents

Increase Quality (and reliability)

decrease error probability \rightarrow pre-training, and fine-tuning support existing (hidden) knowledge

 \rightarrow prompting, model-driven techniques

Increase Scale

generic solutions SE solutions SPLE solutions (partitioning of large software projects)

Increase Task

towards reaching productive usage

when and how integrate existing tools ensure traceability self-optimizations, multiple agents

Increase Quality (and reliability)

decrease error probability \rightarrow pre-training, and fine-tuning

support existing (hidden) knowledge \rightarrow prompting, model-driven techniques

assessment strategies \rightarrow novel datasets and metrics (real-world projects are too large, accuracy not sufficient)

Increase Scale

generic solutions SE solutions SPLE solutions (partitioning of large software projects)

Increase Task

towards reaching productive usage

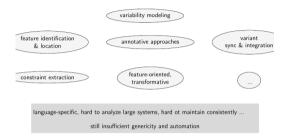
when and how integrate existing tools ensure traceability

self-optimizations, multiple agents

Increase Quality (and reliability)

decrease error probability \rightarrow pre-training, and fine-tuning

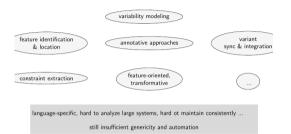
support existing (hidden) knowledge \rightarrow prompting, model-driven techniques


assessment strategies \rightarrow novel datasets and metrics (real-world projects are too large, accuracy not sufficient)

increase reliability \rightarrow reasoning for results, certainty values

exercise the levels for one SPL technique explore combination of classical SPL techniques with Gen-AI support

Summary


Business / Tech

A year after ChatGPT's release, the AI revolution is just beginning

By Catherine Thorbecke, CNN © 8 minute read · Updated 10.32 AM EST, Thu November 30, 2023

6 X = •

Summary

Business / Tech

A year after ChatGPT's release, the AI revolution is just beginning

By Catherine Thorbecke, CNN © 8 minute read - Updated 10.32 AM EST, Thu November 30, 2023

6 X = •

tomation	scale	quality
L4 Full Generative AI for Variability	unlimited	expert
L3 Advanced Generative AI for Variability	multiple (projects)	high
L2 Basic Generative AI for Variability	small (project)	low
L1 No Generative Al for Variability	small (files)	low
LO No Generative Al		

Increase Scale

generic solutions SE solutions SPLE solutions (partitioning of large software projects)

Increase Task

towards reaching productive usage when and how integrate existing tools ensure traceability self-optimizations, multiple agents

Increase Quality (and reliability)

decrease error probability → pre-training, and fine-tuning support existing (hidden) knowledge → prompting, model-driven techniques assessment strategies → novel datasets and metrics (real-world projects are too large, accuracy not sufficient) increase reliability

 \rightarrow reasoning for results, certainty values

Feedback, Questions, ...?